红色中国网

 找回密码
 立即注册
搜索
红色中国网 首 页 红色参考 查看内容

全球首发《6G白皮书》,6G到底是什么?

2019-10-30 22:53| 发布者: 龙翔五洲| 查看: 6614| 评论: 0|原作者: 综合|来自: 昆仑策网

摘要: 尽管全球5G才刚开始,但研究机构已把目光转向6G技术了。近日,芬兰奥卢大学发布了全球首个6G白皮书,此白皮书是基于70位受邀专家于2019年3月在芬兰拉普兰举行的首届6G无线峰会特别研讨会上分享的观点,涵盖6G的关键驱动因素、研究要求、挑战和研究问题等。


1.webp (9).jpg

▲光谱窗口,自由空间损失和水汽吸收的影响距离为10米

下图给出了可用于5G和6G的频带的基本特性。应注意的是,从30 GHz开始进入THz区域时,自由空间损耗的增加非常小。如果天线面积保持恒定,则通过增加天线增益来补偿自由空间损耗。而不是自由空间的损失,较高频率的缺点是RF硬件的复杂性和并行性增加,并且波束宽度减小,这在移动应用中产生了信号采集和波束跟踪的问题。

1.webp (10).jpg

▲5G和6G频谱

当前许多物联网场景都受范围,成本和电池限制,无法轻易扩展到更高的频率。相反,诸如传输全息视频之类的数据速率密集型方案要求带宽即使在当前的毫米波频谱中也不可用。需要根据子带的吸收和反射特性来安排THz频谱的频谱利用,以优化通信和其他应用的使用和重用。具体而言,在支持多种应用的方案中,必须通过仔细的频率规划来防止谐波产物的重叠。由于弱信号检测中的灵敏度是关键瓶颈之一,因此在频率调节中应优先考虑采取预防措施。

研究者们主要关注的问题:
1、如何评估和量化联合国可持续发展目标KPI指标?
2、对于6G通信应用而言,什么是合适的无线电信道模型?是否有可能统一从GHz到THz的整个范围的模型?
3、在100 GHz以上的商用频段需要什么可行的频段?需要哪些技术?
4、数据隐私和安全的适当指标是什么?
5、未来频谱分配和相关政策的真正需求是什么?

04
无线硬件的进展和挑战

首批5G设备将工作在6 GHz以下的频带中,并在固定无线接入到毫米波中。用于5G研究的新硬件技术的重点主要是在毫米波频段上采用新频谱,首先是在24-40 GHz范围内,然后逐渐提高到100 GHz载波频率。要为移动用户启用毫米波,仍需要进行大量研究,包括在非视距(NLOS)环境中灵活地进行多光束采集和跟踪的硬件和算法。大规模多输入多输出(MIMO)天线实现的能效仍然是一个巨大的挑战。

由于较高的路径损耗,因此需要额外的天线增益,并且通信需要利用通过相控阵实现的定向链路。块状互补金属氧化物半导体(CMOS)和CMOS绝缘体上硅(SOI)技术可提供足够的性能,并满足使用片外天线的大多数应用的要求。与射频集成电路(RFIC)相比,天线元件仍然很大。硅锗双极CMOS(BiCMOS)是一个不错的选择,尤其是在接近和超过100 Gbps数据速率和100 GHz载波频率时。

当载波频率进一步提高到1 Tbps链路速度时,定向发送和接收的作用就变得更加明显。同时,在高于100 GHz的频率上使用CMOS晶体管变得更加困难。一方面,继续探索CMOS技术支持100 GHz以上频率的潜力仍然是有益的。另一方面,新的或有时是常规的但性能更好的硬件技术,例如硅锗(SiGe)或磷化铟(InP),可以在更大范围内利用频谱,并改善RF性能。电子硬件的物理和技术边界以及传播的基本定律都会成为瓶颈,或者至少会减慢其发展速度。

100 GHz以上的短波长和更宽的可用带宽将实现更高的数据速率,同时还能实现定位和3D成像和传感的成像和雷达应用之前所未见的角度和测距精度。因此,应该以前所未有的规模一起研究超高速低成本通信和高级传感系统的硬件需求,范围和机会。

无线电解决方案所需的物理空间将随着频率的增加而大大减少:在250 GHz频率下,一个1000天线的天线阵列将适合不到4平方厘米的区域。当前的移动设备的表面积可以容纳数万个天线。与相应的天线相比,这将导致新的挑战,集成电子设备将变得越来越大。为了达到良好的通信或感测范围而需要的大型天线阵列将导致笔形波束异常狭窄。通过将消息仅指向正确的目标,它们可以提供更好的安全性,但是同时它们也容易发生对齐错误。

最大的挑战可能与能耗有关。在低速率传感应用中,需要具有能量收集功能的零能量,独立式无电池解决方案。另一方面,毫无疑问,需要宽带处理的最苛刻的愿景和出乎意料的应用将要求大大提高电源效率。

物理定律和利用它们的相关技术所施加的限制也将使新一代6G无线技术成为可能。当信号处理的目标数据速率和所利用的载频接近主流和负担得起的技术的基本极限时,模拟和数字信号处理中晶体管的速度就成为一个问题。

大规模通信的成功基于CMOS,在最苛刻的RF规范中,还基于BiCMOS的半导体技术,该技术不断降低了每项功能的成本,并提高了模拟和数字处理的速度。这个假设在将来仍然有效吗?由于即使在硅内部,接口的速度也成为主要的瓶颈,尤其是在CMOS中,因此较小的晶体管提供的增加的速度不容易获得。纳米级技术的更有限的功率传输能力进一步挑战了这一点,这导致了信号处理所有阶段中并行性的提高。不利的热效应,低击穿电压和有限的电池容量是通向Tbps通信方式的明显障碍。但是,要想完全替代硅技术是一项挑战,要扩展主流技术的使用的所有机会都需要从器件到收发器架构的进一步研究。

一个天线元件的尺寸将变小,因为即使在较低的THz频率下,阵列元件之间的半波长距离也将达到数百微米-这种尺寸可将天线阵列集成到硅片中。随着天线元件的尺寸变得小于相关的电子设备,将需要采用新的收发器架构方法。为了避免成千上万的带有天线元件的并行收发器前端,基于透镜的先进系统可能会发挥重要作用。

材料属性和有害的寄生效应通常会随着频率的增加而变差。因此,当前的焦点集中在优于CMOS的硅锗异质结双极晶体管(HBT)上。此外,更快的III-V半导体技术(例如磷化铟)值得更多关注。从镜头到数字技术的各种技术的包装和集成面临的挑战是关键的研究问题之一。光子学是THz领域的主导技术,也是用于高速接口的解决方案,是6G的可行技术。随着所谓的太赫兹(THz)差距不断缩小,电子和光学器件为超高速接口和可见光通信带来了互补的机会。这是6G领域中与特定但廉价的光学组件和系统解决方案进行短距离链接的机会。

研究者们主要关注的问题:
1、在所谓的“THz间隙”周围,电子和光学技术如何融合并专门用于不同的应用?
2、硅基技术在THz/Tbps系统中表现良好吗?还需要哪些其他技术?
3、在频率远高于100ghz的情况下,如何才能实现足够的输出功率和可操控的天线阵列,用于10米以上的通信和传感?
4、可调天线和其他射频解决方案能在100 GHz以上的频率下实现吗?机器学习能帮助解决这个问题吗?
5、THz区域如何能同时满足通信、传感、物质检测和成像的相互需求?

 

05
物理层和无线系统

没有任何一种解决方案可以满足所有垂直应用程序的需求。巨大的系统需求,例如大规模的宽带,超可靠的低延迟通信(URLLC),大规模的机器类型通信(mMTC)和极高的功率效率,意味着将需要许多解决方案。需要逐案优化系统,并且必须重新定义不同用例之间的兼容性。

当前的5G新无线电(NR)网络尚未能够满足现有和新兴URLLC要求的所有苛刻设计需求,例如超高可靠性,超低延迟,超安全网络。因此,我们研究了未来物理层和无线系统的前景。除了地面网络,还需要基于卫星和无人飞行器(或类似的空中平台)的基础设施来满足覆盖范围和容量要求。

当与数据爆炸以及越来越多的数据在小型设备中打包和处理这一事实结合在一起时,能源和功耗就变得特别具有挑战性。同时,收发器处理和最终用户应用程序的复杂性可能会导致导致过多的能源消耗,而无需在所有层上进行仔细设计以提高能效。

要满足所有已确定的挑战性要求,就需要具有可配置无线电的超灵活网络。人工智能和机器学习将与无线电感测和定位一起使用,以了解无线电环境的静态和动态组成部分。仅以此为例,这将用于预测高频下的链路丢失事件,主动确定密集城市网络中的最佳切换实例并确定基站和用户的最佳无线电资源分配。未来的无线网络必须能够与地面,卫星和机载网络无缝连接。可见光通信是在室内场景中实现Tbps数据速率的关键推动力。

需要新的空中接口使能器,并且必须开发新的空中接口使能器以满足这些要求。多数要求广泛使用ML和AI算法,以改善空中接口的时变性能。语义通信的概念(利用消息的含义使连接和联网更有效)是与语义AI紧密相关的重要的新兴研究领域。一个重要的问题是,对于给定的环境和一组特定的要求,是否可以使用AI快速设计最佳的空中接口。这表明AI启发了空中接口。但是,它们的真实性能,特别是实际使用案例中的功率和能源效率是一个开放的研究问题。

1.webp (11).jpg

▲未来无线的挑战

6G系统要扩展5G开始的趋势,就必须灵活地启用mMTC用例,在支持高功率效率的同时,支持大量低功耗和低复杂度的设备。这些需求对物联网特别苛刻,其中设备偶尔会生成短数据包,并且资源分配的开销可能超过实际的信息交换。基于适当协议设计并依靠连续干扰消除的现代随机访问解决方案可能成为该方向的关键推动力。实际上,已经在某些卫星标准中采用了这些标准,它们被证明可以实现预定访问的性能,同时实现真正的无赠款方法。此外,现代的随机访问协议利用物理层和MAC层的联合设计来提高可达到的吞吐量。这些对于短距离连接解决方案,即在非蜂窝域中可能是有用的。

为了从这种紧密的集成中充分受益,应该考虑数据帧结构的优化以及前向纠错设计。必须注意调制方案的选择,对于有限的信道状态知识以及将5G信道编码选项扩展到短而低速率的数据包而言,调制方案必须具有鲁棒性。

为了实现比特率的增强性能,将需要使用非常高的星座调制。然而,这些高阶星座对传输介质中的非线性敏感。用于正交幅度调制(QAM)的信号整形可能能够克服其中一些挑战。信号整形分为两种:几何的和概率的。几何和概率QAM星座整形都有望在光学和太赫兹无线通信系统中实现创纪录的高比特/秒/赫兹/极化。

事实证明,正交频分复用(OFDM)对于宽带连接非常有效。较早前也提出了在60 GHz下具有大于500 MHz带宽的超宽带(UWB)系统的多频带OFDM版本。当传输带宽达到极限时,例如数百GHz频段上的几GHz甚至几十GHz,传统的收发器设计就会开始失败,并且多载波调制无法像当前技术那样工作。相反,将需要更强大的模拟调制方案。

未来的光学无线通信可能依赖于量子密钥分发(QKD)方案,该方案可以提供一些独特的物理层安全性功能,从而为某些6G应用和使用案例启用所需的超安全网络。QKD提供了一种在两个用户之间分发密钥的安全方法。这样,通过量子力学而不是复杂的计算确保了保密性。此外,在6G中可能会使用通过物理层签名(例如RF指纹)和某些其他技术(例如MIMO传输系数的随机化,编码等)的身份验证。

总体网络和系统级能效,特别是每焦耳的位数,需要显着提高以支持6G的要求。这需要优化无线电资源,以便系统地设计发射能量和所需处理能量之间的受控平衡。该方法要求以节能的方式进行编码,调制,发送和接收处理以及功率和频率分配。此外,终端甚至在低功耗IoT节点中还需要超低能耗(sub mW)功能。其中大多数可以通过适当的RF和基带硬件设计来实现,但是低功耗编码,调制和物理层(nonOFDM)也需要解决。来自环境和RF波形的反向散射通信和能量收集也将使具有不可更换电池的IoT节点具有较长的使用寿命。另外,使用RF功率进行连接和计算的反向散射通信可以提供通向超低功率通信的途径。

在电磁可调表面(例如基于超材料)的革命的推动下,6G将控制来自大型智能表面(LIS)的信号反射和折射。开放研究的问题涉及从无源反射器和超材料涂层智能表面的优化部署到可重配置LIS的AI驱动操作。需要进行基本分析以了解LIS和智能表面的性能,包括速率,延迟,可靠性和覆盖范围。另一个重要的研究方向是环境AI,其中智能表面可以学习并自主地重新配置其材料参数。挑战包括如何在大型超材料表面上聚焦具有不同入射角的信号,这需要反射/折射系数的可控性。在移动环境中,由ML驱动的智能曲面可能需要连续的重新训练,其中需要访问足够的训练数据,高计算能力和有保证的低训练收敛性。

通过使用LIS和类似结构,使用6G可使全息照相无线电成为可能。全息RF允许通过空间光谱全息和空间波场合成来控制整个物理空间和电磁场的完整闭环。这将大大提高频谱效率和网络容量,并有助于集成成像和无线通信。

研究者们主要关注的问题:
1、如何设计高速率、低延迟、高可靠性、大带宽的信道编码、调制、检测和解码?
2、如何解码Tbit/s通信(速度)?
3、如何设计满足高能效和低成本要求的系统?我们如何实现真正的无电池操作?
4、如何通过物理层技术提高信息的安全性、私密性和可靠性?量子密钥分配与光学(或微波在未来)是可行的吗?
5、如何有效地设计毫米波/太赫兹链路,系统和收发器?如何补偿或维持相位噪声?相干,不相干,部分相干的系统有什么作用?如何实现移动定位,频道获取和跟踪?
6、如何将有源天线阵列与透镜天线相结合,实现大规模的MIMO和智能波束转向?如何设计具有大型智能表面的系统?
7、如何设计高性能计算平台与射频链之间的高效接口?
8、如何应对高速的火车和无人机来支持网络连接?我们可以也应该继续使用多载波技术吗?我们需要新的波形吗?比如那些基于特殊仿射傅里叶变换的波形?

鲜花

握手

雷人

路过

鸡蛋

最新评论

Archiver|红色中国网

GMT+8, 2024-4-29 13:56 , Processed in 0.013531 second(s), 12 queries .

E_mail: redchinacn@gmail.com

2010-2011http://redchinacn.net

回顶部